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Novel Nanocarbons: Carbon Aerogels

+
1) Catalyst, 

H2O

2) Supercritical
Extraction

Resorcinol Formaldehyde RF Organic Aerogel
Carbon Aerogel

, N2

Pekala et al, J. Mater. Sci. 24, 3221 (1989).

Flexibility of sol-gel synthesis:
• Allows addition of CNTs to sol-gel reaction to create CNT-CA 

Primary Carbon Particles
(2 ≤ d ≤ 25 nm)

containing microporosity
(d < 2 nm)

Mesoporosity

2 ≤ d ≤ 50 nm

• CAs are unique porous materials comprised of 3D networks of interconnected 
nanometer-sized carbon particles

Exceptional CA properties :
• Continuous porosity
• High surface areas
• Ultrafine pore size
• Electrically conductive
• Variable density
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Synthesis of CNT Areogel Foams

We have made ultralow-density graphitic carbon nanofoams with unprecedented properties

“Wet” gel (3D)

Supercritical CO2
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Physical properties of CNT-based aerogel
(CNT-CA) foams

These high-surface 
area (~200 m2/g), 
conductive CNT-CA 
serve as an extremely 
low-density scaffold 
for a MOx/C, polymers 
etc. Complete recovery after uniaxial

compression to ~70% strain

Large elastic range

Stiffest low-density solid reported

Electrically conductive at low density

Randomly interconnected nanotube bundles are “glued” 
together by graphitic carbon aerogel particles.

Worsley et al, Appl. Phys. Lett. 94, 073115 (2009).
Worsley et al, J. Mater. Chem. 19, 3370 (2009).
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INCORPORATION INTO A POLYMER 
MATRIX

Applications of CNT-Carbon Areogel foams
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CNT-CA foam-PDMS composite materials

 It is possible to combine these novel, ultra-low density areogel 
networks with siloxane polymer systems to form areogel-siloxane
composites with novel physical properties:

. . .. .. . . ...
. .
.

. . .. .
.

.

CA-CNT 
foam

PDMS resin

Thermal 
cure

PDMS elastomer 
impregnated CA-CNT 
areogel

PDMS/CA-CNT composites:
•Greatly increased mechanical properties (y-Mod increase from  5 to 15 MPa)
•Highly electrically conductive:  1 S cm-1  vs.  <0.001 S cm-1
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WHAT EFFECT DOES THE SCAFFOLD 
HAVE ON THE MATRIX STABILITY?

Thermal degradation behavior of PDMS-CNT-CA composites 
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Pyrolysis GC-MS – the technique

 The basic experimental set-up consists of a ‘pyrolysis
head’ connected online to a standard gas 
chromatography mass spectrometry system

Pyrolyser

Furnace &

Sample 
chamber

GC

Product 
separation

MS

Detection

Helium 

Carrier gas

Sample 
introduction
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Utility and advantages of the technique

 Small sample size (1-2 mg)

 Wide dynamic range of heating rates and temperatures (0.1-999 
deg. C/min and max temperature of 1200-1400 deg. C.)

 Small sample size and wide dynamic range allow the investigation 
of many volatiles evolution processes, from low temperature 
offgassing to non-diffusion limited high temperature thermal 
degradation.

 GC-MS for volatile product separation and detection: high 
sensitivity for the detection of trace products and broad mass 
range of detection from small molecules to larger species. 
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Py-GC-MS capability at LLNL

 CDS analytical 5150 pyroprobe system coupled to Agilent 7980 
series GC-MS system. 

Platinum filament pyrolyzer for pulse 
pyrolysis and multistep, programmed 
pyrolysis

Filament Temperature:
Programmable in 1°C increments to 
1400°C

Heating Rates: 0.01 to 20.0°C/ms (10 to 20,000°C/second)
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Probing the thermal stability of the composites 
with Py-GC-MS

 Pyrolysis GC-MS had been utilized to characterize the thermal 
stability and degradation chemistry of the siloxane-CA-CNT 
composites

 Master curves yield information on the overall stability/degradation 
process and GC-MS product separation yields chemical 
information
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Degradation of the base components

 The degradation profile of the PDMS elastomer  base was 
compared to that of the base carbon areogel component
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The influence of the carbon areogel
 The carbon areogel alone has a rather profound effect on the 

stability of the siloxane matrix: 
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The influence of the carbon areogel

 Interestingly, the normally resistant to change PDMS degradation 
chemistry is significantly altered in the presence of the CA areogel:
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How do the nanotube reinforced systems effect the 
chemistry?
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How do the nanotube reinforced systems effect 
the chemistry?
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MQ NMR ANALYSIS OF THE PDMS-
CNT-CA COMPOSITES 

Can we determine why this network affects the degradation 
chemistry so profoundly?
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ssNMR as a complimentary technique to assess mobility 
in polymeric systems

 Double Quantum NMR an efficient way to probe 
chain mobility

 Via proton-proton dipolar interaction

 Local interaction depends directly on ability 
of chain to reorient

 Highly dependent on topological constraints:

 Chemical crosslinks, physical 
interactions, chain entanglement, etc.

 Parameterized by a residual dipolar 
coupling, Dres, measuring interaction 
strength between two protons along the 
chain length

backbone

protons

The more restricted proton mobility becomes

…

The larger the value of Dres. (Proton mobility)-1
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Distributions of ssNMR-derived Dres reveal both 
morphological and dynamical details 

 Can extract distributions of residual dipolar 
couplings from DQ coherence build-up as 
measured by 1H NMR.
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Distributions of ssNMR-derived Dres reveal both 
morphological and dynamical details 

 Can extract distributions of residual dipolar 
couplings from DQ coherence build-up as 
measured by 1H NMR.

 For multicomponent build-ups, can extract 
distributions in a model-free way.

 FTIKREG (regularization software) Multiple slopes suggest multimodal behavior…

FTIKREG software

At least TWO distinct 
populations 

distinguishable by 
disparate mobilities.



21Option:UCRL# Option:Additional Information

Lawrence Livermore National Laboratory

What can DQ NMR Tell us about these materials
 Show below are the extracted RDC distributions obtained from the 

CA-CNT-siloxane composites

As expected, the 
majority of the 
PDMS chains are 
generally 
unperturbed by the 
presence of the 
areogel scaffold and  
behave  like the 
base monomodal
network (not shown)

This is attributed to 
the low density and 
of the carbon 
scaffold

Significantly, however 
we observe a distinct 
secondary population 
with decreased mobility

Evidence of chains that  
are partially 
immobilized/associated 
with the carbon/CNT 
scaffold.

The network is stiffened 
around the scaffold.
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What can DQ NMR Tell us about these materials
 Show below are the extracted RDC distributions obtained from the 

CA-CNT-siloxane composites

As expected, the 
majority of the 
PDMS chains are 
generally 
unperturbed by the 
presence of the 
areogel scaffold and  
behave  like the 
base monomodal
network (not shown)

This is attributed to 
the low density and 
of the carbon 
scaffold

Significantly, however 
we observe a distinct 
secondary population 
with decreased mobility

Evidence of chains that  
are partially 
immobilized/associated 
with the carbon/CNT 
scaffold.

The network is stiffened 
around the scaffold.

Decreasing chain mobility
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What do we know?

 Phyical entrapment
 Diffusion control
 ‘matrix propping’
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What don’t we know?
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What may be happening?

 PCA.
 More deg.
 More NMR
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SWNT-CA: Foam morphology changes

4% 19%

30% 56%

Dramatic change in foam structure at high nanotube loadings (> 20 wt%)
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SWNT-CA Composite: Electrical conductivity enhanced

Electrical Conductivity Enhancement 
vs SWNT Concentration
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SWNT-CA: Exhibit elastic behavior up to large strains

Compete recovery after uniaxial 
compression to ~70% strain

Large elastic range

Pop-in events limit the elastic range

Large elastic range

• Low-density (<50 mg/cm3) foams exhibit 
large (70-90%) fracture strains

• Deformation depends on both density and 
nanotube loading

• Energy dissipation is similar to that 
observed for nanotube mats 

Stiff “sponges” with huge fracture strains instead of traditionally fragile aerogels



31Option:UCRL# Option:Additional Information

Lawrence Livermore National Laboratory

Summary
 A novel class of nanoporous graphitic carbon foams has been 

synthesized
 Unprecedented properties: Electrically conductive, thermally 

stable (>1000 oC), and mechanically robust
 Improved transport properties (DWNT-CA, SWNT-CA):

• Greater than 100% enhancement in thermal conductivity
• 100-400% improvement in electrical conductivity

 Rich mechanical deformation behavior (SWNT-CA):
• Stiff (~100% improvement of elastic modulus)
• Energy dissipation
• Fracture toughness 
• Fatigue behavior

 Implications for energy-related technologies
• Hydrogen storage
• Fusion and fission energy
• Catalysis
• Electrochemical energy storage
• Composites with foam scaffolds   
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SWNT-CA: Exhibit nonlinear elastic behavior with energy dissipation

• Loading elastic modulus decreases with 
increasing strain

• Elastic nonlinearity is attributed to 
buckling of high-aspect-ratio 
nanoligaments

• Elastic nonlinearity increases for 
samples with larger nanotube loading

• Energy dissipation is attributed to 

– van der Waals interaction of 
ligaments 

– dissipative movement of air filling the 
pore volume

Loading with carbon nanotubes increases energy dissipation and nonlinear behavior
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We use low-load, large-displacement indentation to study 
nanomechanics of foams
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Major challenge of foam indentation = Low material stiffness

Contact stiffness < Instrument Stiffness (~10-100 N/m)  Incorrect surface determination 
(Gross) overestimation of mechanical properties

Large spherical (R = 496, 986 microns) and flat punch (R = 31, 761 microns) tips were used 
to measure ultralow-density foams

MTS XP Nanoindenter.
Oliver-Pharr analysis.

Penetration depths and contact areas are much larger than in conventional nanoindentation
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RF Sol-Gel Chemistry

Pekala et al, Journal of Non-Crystalline Solids 125 (1990) 67-75
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SWNT-CA Composite: Electrical conductivity enhanced

Electrical Conductivity Enhancement 
vs SWNT Concentration
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Fracture behavior depends on both nanotube loading and monolith 
density   

Ultralow-density (<50 mg/cm3) foams have superior elastic and fracture properties

For densities >50 mg/cm3, nanotube-
based foams have better elastic but 
inferior fracture properties than those 
of conventional carbon aerogels
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